SKETCH OF EXPLICIT PROOFS OF THE INCOMPLETENESS THEOREMS WITH CONCATENATION THEORY AND ROSSER'S TRICK

ALEXANDER R. PRUSS

ABSTRACT. I sketch an explicit proof of the first incompleteness theorem with concatenation theory and Rosser's trick.

1. The concatenation language

We will work in a first-order quantified language L with identity and logical connectives $\forall, \exists, \lor, \land, \rightarrow, \leftrightarrow$, and \neg . The language is designed to talk about strings of symbols. These symbols include the logical connectives, lower and uppercase Latin letters, digits, parentheses, brackets, =, +, *, comma, the quotation marks ' and ', plus symbols needed to write down proofs, such as a vertical line, a newline and a horizontal line for Fitch systems. Suppose there are N symbols in the alphabet. Unindexed Greek letters early in the alphabet like α and β indicate arbitrary symbols, and σ_i indicates the *i*th symbol in the alphabet. I will allow substitution within quotation marks, and won't bother with corner quotes.

Then, the names are:

• ' α ': the symbol α (for any of the symbols in L's alphabet)

and the functions are:

- x + y: x + y is the concatenation where x is followed by y
- $R(x, y_1, ..., y_N)$: this takes the string of symbols x and replaces σ_i with the string y_i .

This comes with a system T that contains a recursively enumerable collection of intuitive axioms that is rich enough for the proofs. Note that T will say that there is an empty string $(\exists x \forall y (y = y + x \land y = x + y))$.

2. Useful abbreviated stuff

I will use abbreviations of complex expressions in the system. Parentheses are taken to be inserted in a consistent way whenever needed to disambiguate things, and variables will be switched as needed.

INCOMPLETENESS

- Proves(x, y): an incredibly complex statement that x is a proof of y from the axioms of T
- " $\alpha\beta\gamma...$ ": shorthand for (' α ' + ' β ' + ' γ ' + ...) for any symbols $\alpha\beta\gamma...$
- Quotes(x, y): shorthand for an expression that says that x is a quotation of y, i.e., that x is an expression of the form $(\alpha' + \beta' + \gamma' + \ldots)$ where y is $\alpha\beta\gamma\ldots$. This can be defined using the replacement function R:

$$\exists z(`('+z+`)' = x \land x+`+' = R(y, ``\sigma_1'+", ``\sigma_2'+", ...)).$$

• Contains(x, y): x contains substring y, i.e.,

$$\exists v \exists w (x = v + y + w).$$

• FirstQuotes(x, y): x has a quotation in it, and the first quotation in it is of y, i.e.,

 $\exists v \exists w \exists z (\operatorname{Quotes}(z, y) \land x = v + z + w \land \neg \operatorname{Contains}(v, ``)).$

• FQAsterisked(x, y): y is obtained by replacing the first quotation in x by an asterisk, i.e.:

 $\exists v \exists w \exists z \exists u (\text{Quotes}(z, u) \land x = v + z + w \land \neg \text{Contains}(v, ``) \land y = v + `*' + w).$

• $x \leq y$: y is at least as long as x, i.e.,

Contains(R(y, `*`, `*', ...), R(x, `*`, `*', ...)).

- n(x): the negation of x, i.e., " \neg (" + x + ')".
- Refutes(x, y): x proves the negation of y or a negand of y, i.e.,

 $\operatorname{Proves}(x, n(y)) \lor \exists z(y = n(z) \land \operatorname{Proves}(x, z)).$

- P(y): there is a proof of y, i.e., $\exists x \operatorname{Proves}(x, y)$
- $\operatorname{RP}(y)$: there is a Rosser proof of y, i.e., there is a proof of y such that any refutation of y is longer:

 $\exists x (\operatorname{Proves}(x, y) \land \neg \exists z (z \le x \land \operatorname{Refutes}(z, y))).$

3. The Gödel and Rosser sentences

3.1. Truth is not provability. Assume the theory T is true. Let Almost abbreviate:

$$\forall x \forall z ((z = * \rightarrow (\text{FirstQuotes}(x, z) \land \text{FQAsterisked}(x, z))) \rightarrow \neg P(x)).$$

Let q be the Gödel sentence:

$$\forall x \forall z ((z = \text{``Almost''} \to (\text{FirstQuotes}(x, z) \land \text{FQAsterisked}(x, z))) \to \neg P(x)).$$

Fact 1: The one and only string z that satisfies

 $\forall z ((z = \text{``Almost''} \rightarrow (\text{FirstQuotes}(x, z) \land \text{FQAsterisked}(x, z)))$

INCOMPLETENESS

is g.

It follows that g is true if and only if $\neg P(g)$. Now, either P(g) or $\neg P(g)$. If $\neg P(g)$, then g is true and not provable. If P(g), then g is not true, and hence $\neg \neg P(g)$, so g is provable in T. Thus, if all statements provable in T are true, it follows that g is true, a contradiction. Hence:

Theorem 1. Assume all statements provable in T are true. Then g is an unprovable truth.

This is a consequence of Tarski's Undefinability of Truth.

Question: Haven't we just proved that there is an unprovable truth, and thus contradicted ourselves?!

Answer: We proved that if all statements provable in T are true, then g is unprovable. That all statements provable in T are true will not be provable in T. (After all, "true" is not in the language L.)

3.2. The First Incompleteness Theorem. Let r be defined like g except with RP in place of P.

Theorem 2 (First Incompleteness). If T is consistent, then neither r nor $\neg r$ is provable in T.

Fact 2: In T, for any p we can prove that we cannot have both $\operatorname{RP}(p)$ and $\operatorname{RP}(n(p))$.

Proof. Reason in T. To get a contradiction, suppose $\operatorname{RP}(p)$ and $\operatorname{RP}(n(p))$. By $\operatorname{RP}(p)$, let x be a proof of p such that any refutation of p is longer than x, and by $\operatorname{RP}(n(p))$ let y be a proof of $\neg p$ such that any refutation of $\neg p$ is longer than y. Then y is a refutation of p, so y is longer than x, and x is a refutation of $\neg p$, so x is longer than y, a contradiction.

Fact 3: In T, we can prove that $r \leftrightarrow \neg \operatorname{RP}(r)$.

This is an analogue of Fact 1 and it's a lot of fiddling with strings. Since I'm doing a sketch, I won't bother with any proof.

Now we can prove First Incompleteness.

Suppose T proves r with proof x. Then by consistency there is no refutation y of r with $y \leq x$. We can prove in T that x is a proof of r (just some syntactic checking). We can also prove in T that there is no refutation y of r with $y \leq x$ (only need to go through a finite number of strings of length not exceeding that of y, and for each one verify that it's not a refutation of r). Thus, T proves $\operatorname{RP}(r)$.

By Fact 3, T proves $\neg r$, and so T is inconsistent, a contradiction. Thus, T cannot prove r.

INCOMPLETENESS

Suppose T proves $\neg r$ with proof x. Then T has no refutation y of $\neg r$ with $y \leq x$. We can prove in T that x is a proof of $\neg r$ and that there is no such refutation. Thus, T proves $\operatorname{RP}(n(r))$. By Fact 2, in T can prove $\neg \operatorname{RP}(p)$. By Fact 3, T proves r. So T is inconsistent, a contradiction.

Thus, T cannot prove $\neg r$.

4. The Second Incompleteness Theorem

Use $\operatorname{Con}(T)$ to abbreviate the statement $\neg(\operatorname{P}(\phi) \land \operatorname{P}(n(\phi)))$ for whatever sentence ϕ you wish.

Suppose T proves $\operatorname{Con}(T)$. Then formalizing the proof of First Incompleteness inside T, we can prove $\neg \operatorname{RP}(r) \land \neg \operatorname{RP}(n(r))$ in T. Hence we can prove $\neg \operatorname{RP}(r)$ in T. By Fact 3, we can prove r in T. By First Incompleteness, it follows that T is inconsistent.

5. Arithmetic

We can encode strings as arithmetic (and vice versa). For instance, if N < 1000, we can encode the *i*th symbol σ_i as a three digit number between 001 and 999, and then string them together to get a number. All the appropriate axioms of our concatenation theory will have analogues in arithmetic. Consequently, First and Second Incompleteness hold in arithmetic (with the Second Incompleteness prsupposing a specific encoding of what $\operatorname{Con}(T)$ means).

6. *Appendix: Binary replacement

The $R(x, y_1, ..., y_N)$ function has rather big arity. One may prefer to work with a smaller arity function, like $\rho(x, y, z)$ where every occurrence of y in x is replaced by z. (The precise semantics are that the replacements are done left to right, and after each replacement of a y by z, the search and replace restarts after the end of the z.) To define Quotes(x, y) in terms of ρ , first apply ρ repeatedly, N times, replacing each symbol α in the alphabet by a string of two copies of α . Once this has been done, Then we apply ρ again N times to replace $\alpha \alpha$ with ' α '+ for each symbol α , with ++ replaced first, then '', and then all the other paired symbols. This gives us the equivalent of $R(y, "\sigma_1'+", "\sigma_2'+", ...)$.

Email address: alexander_pruss@baylor.edu

BAYLOR UNIVERSITY