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Abstract. I sketch an explicit proof of the first incompleteness
theorem with concatenation theory and Rosser’s trick.

1. The concatenation language

We will work in a first-order quantified language L with identity
and logical connectives ∀, ∃, ∨, ∧, →, ↔, and ¬. The language is
designed to talk about strings of symbols. These symbols include the
logical connectives, lower and uppercase Latin letters, digits, paren-
theses, brackets, =, +, ∗, comma, the quotation marks ‘ and ’, plus
symbols needed to write down proofs, such as a vertical line, a newline
and a horizontal line for Fitch systems. Suppose there are N symbols
in the alphabet. Unindexed Greek letters early in the alphabet like α
and β indicate arbitrary symbols, and σi indicates the ith symbol in
the alphabet. I will allow substitution within quotation marks, and
won’t bother with corner quotes.

Then, the names are:

• ‘α’: the symbol α (for any of the symbols in L’s alphabet)

and the functions are:

• x+ y: x+ y is the concatenation where x is followed by y
• R(x, y1, ..., yN): this takes the string of symbols x and replaces
σi with the string yi.

This comes with a system T that contains a recursively enumerable
collection of intuitive axioms that is rich enough for the proofs. Note
that T will say that there is an empty string (∃x∀y(y = y + x ∧ y =
x+ y)).

2. Useful abbreviated stuff

I will use abbreviations of complex expressions in the system. Paren-
theses are taken to be inserted in a consistent way whenever needed to
disambiguate things, and variables will be switched as needed.
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• Proves(x, y): an incredibly complex statement that x is a proof
of y from the axioms of T

• “αβγ...”: shorthand for (‘α’ + ‘β’ + ‘γ’ + . . . ) for any symbols
αβγ...

• Quotes(x, y): shorthand for an expression that says that x is a
quotation of y, i.e., that x is an expression of the form (‘α’ +
‘β’ + ‘γ’ + . . . ) where y is αβγ.... This can be defined using the
replacement function R:

∃z(‘(’ + z + ‘)’ = x ∧ x+ ‘+’ = R(y, “‘σ1’+”, “‘σ2’+”, ...)).

• Contains(x, y): x contains substring y, i.e.,

∃v∃w(x = v + y + w).

• FirstQuotes(x, y): x has a quotation in it, and the first quota-
tion in it is of y, i.e.,

∃v∃w∃z(Quotes(z, y) ∧ x = v + z + w ∧ ¬Contains(v, ‘‘’)).

• FQAsterisked(x, y): y is obtained by replacing the first quota-
tion in x by an asterisk, i.e.:

∃v∃w∃z∃u(Quotes(z, u)∧x = v+z+w∧¬Contains(v, ‘‘’)∧y = v+‘∗’+w).

• x ≤ y: y is at least as long as x, i.e.,

Contains(R(y, ‘∗’, ‘∗’, ...), R(x, ‘∗’, ‘∗’, ...)).
• n(x): the negation of x, i.e., “¬(” + x+ ‘)’.
• Refutes(x, y): x proves the negation of y or a negand of y, i.e.,

Proves(x, n(y)) ∨ ∃z(y = n(z) ∧ Proves(x, z)).

• P(y): there is a proof of y, i.e., ∃xProves(x, y)
• RP(y): there is a Rosser proof of y, i.e., there is a proof of y
such that any refutation of y is longer:

∃x(Proves(x, y) ∧ ¬∃z(z ≤ x ∧ Refutes(z, y))).

3. The Gödel and Rosser sentences

3.1. Truth is not provability. Assume the theory T is true.
Let Almost abbreviate:

∀x∀z((z = ∗ → (FirstQuotes(x, z) ∧ FQAsterisked(x, z))) → ¬P(x)).

Let g be the Gödel sentence:

∀x∀z((z = “Almost” → (FirstQuotes(x, z)∧FQAsterisked(x, z))) → ¬P(x)).

Fact 1: The one and only string z that satisfies

∀z((z = “Almost” → (FirstQuotes(x, z) ∧ FQAsterisked(x, z)))
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is g.
It follows that g is true if and only if ¬P(g). Now, either P(g) or

¬P(g). If ¬P(g), then g is true and not provable. If P(g), then g is not
true, and hence ¬¬P (g), so g is provable in T . Thus, if all statements
provable in T are true, it follows that g is true, a contradiction.

Hence:

Theorem 1. Assume all statements provable in T are true. Then g is
an unprovable truth.

This is a consequence of Tarski’s Undefinability of Truth.
Question: Haven’t we just proved that there is an unprovable truth,

and thus contradicted ourselves?!
Answer: We proved that if all statements provable in T are true,

then g is unprovable. That all statements provable in T are true will
not be provable in T . (After all, “true” is not in the language L.)

3.2. The First Incompleteness Theorem. Let r be defined like g
except with RP in place of P.

Theorem 2 (First Incompleteness). If T is consistent, then neither r
nor ¬r is provable in T .

Fact 2: In T , for any p we can prove that we cannot have both
RP(p) and RP(n(p)).

Proof. Reason in T . To get a contradiction, suppose RP(p) and
RP(n(p)). By RP(p), let x be a proof of p such that any refutation of
p is longer than x, and by RP(n(p)) let y be a proof of ¬p such that
any refutation of ¬p is longer than y. Then y is a refutation of p, so y
is longer than x, and x is a refutation of ¬p, so x is longer than y, a
contradiction. □

Fact 3: In T , we can prove that r ↔ ¬RP(r).
This is an analogue of Fact 1 and it’s a lot of fiddling with strings.

Since I’m doing a sketch, I won’t bother with any proof.
Now we can prove First Incompleteness.
Suppose T proves r with proof x. Then by consistency there is no

refutation y of r with y ≤ x. We can prove in T that x is a proof of
r (just some syntactic checking). We can also prove in T that there
is no refutation y of r with y ≤ x (only need to go through a finite
number of strings of length not exceeding that of y, and for each one
verify that it’s not a refutation of r). Thus, T proves RP(r).

By Fact 3, T proves ¬r, and so T is inconsistent, a contradiction.
Thus, T cannot prove r.
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Suppose T proves ¬r with proof x. Then T has no refutation y of
¬r with y ≤ x. We can prove in T that x is a proof of ¬r and that
there is no such refutation. Thus, T proves RP(n(r)). By Fact 2, in
T can prove ¬RP(p). By Fact 3, T proves r. So T is inconsistent, a
contradiction.

Thus, T cannot prove ¬r.

4. The Second Incompleteness Theorem

Use Con(T ) to abbreviate the statement ¬(P(ϕ)∧P(n(ϕ))) for what-
ever sentence ϕ you wish.

Suppose T proves Con(T ). Then formalizing the proof of First In-
completeness inside T , we can prove ¬RP(r)∧¬RP(n(r)) in T . Hence
we can prove ¬RP(r) in T . By Fact 3, we can prove r in T . By First
Incompleteness, it follows that T is inconsistent.

5. Arithmetic

We can encode strings as arithmetic (and vice versa). For instance,
if N < 1000, we can encode the ith symbol σi as a three digit number
between 001 and 999, and then string them together to get a num-
ber. All the appropriate axioms of our concatenation theory will have
analogues in arithmetic. Consequently, First and Second Incomplete-
ness hold in arithmetic (with the Second Incompleteness prsupposing
a specific encoding of what Con(T ) means).

6. *Appendix: Binary replacement

The R(x, y1, ..., yN) function has rather big arity. One may prefer
to work with a smaller arity function, like ρ(x, y, z) where every oc-
currence of y in x is replaced by z. (The precise semantics are that
the replacements are done left to right, and after each replacement of
a y by z, the search and replace restarts after the end of the z.) To
define Quotes(x, y) in terms of ρ, first apply ρ repeatedly, N times,
replacing each symbol α in the alphabet by a string of two copies of
α. Once this has been done, Then we apply ρ again N times to re-
place αα with ‘α’+ for each symbol α, with ++ replaced first, then ‘‘,
and then all the other paired symbols. This gives us the equivalent of
R(y, “‘σ1’+”, “‘σ2’+”, ...).
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