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Abstract. One of the problems that Bayesian regularity, the thesis
that all contingent propositions should be given probabilities strictly
between zero and one, faces is the possibility of random processes that
randomly and uniformly choose a number between zero and one.
According to classical probability theory, the probability that such a
process picks a particular number in the range is zero, but of course
any number in the range can indeed be picked. There is a solution to
this particular problem on the books: a measure that assigns the same
infinitesimal probability to each number between zero and one. I will
show that such a measure, while mathematically interesting, is
pathological for use in confirmation theory, for the same reason that a
measure that assigns an infinitesimal probability to each possible
outcome in a countably infinite lottery is pathological. The pathology
is that one can force someone to assign a probability within an
infinitesimal of one to an unlikely event.

1. Introduction

Bayesian regularity, the thesis that all contingent propositions should be
given probabilities strictly between zero and one, is difficult to sustain.
Classical probability theory assigns the extreme probabilities zero or one to
a number of contingent propositions. Some of these contingent
propositions are even quite important to Bayesians. Thus, famously
Savage’s convergence theorem (Savage, 1954, 52–54) shows that under
some assumptions the probability that posterior probabilities for what is in
fact a truth will converge to certainty is one. Yet the proposition that the
posterior probabilities will thus converge is contingent.
The best bet for Bayesian regularists has been to hope that an extension of
the probability calculus that allows for infinitesimal probabilities could
save regularity. Unfortunately, recent results give little comfort to such
hope. Williamson (2007) has shown that the probability that a fair coin
will come up heads on each of infinitely many throws must be taken to be
zero and not just infinitesimal (though see Weintraub, 2008, for a riposte),
and Pruss (manuscript) proved that no matter how much one expands the
range of values of the probability calculus, if the sample space is large
enough regularity will fail. There is, however, one area where the
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infinitesimal strategy seems to have had an early success, and this is in
Bernstein and Wattenberg’s (1969) demonstration that you can produce a
finitely additive measure that assigns the same non-zero infinitesimal
probability to each point of the interval [0, 1] = {x : 0 ≤ x ≤ 1}. A
two-dimensional version of the Bernstein and Wattenberg measure could,
for instance, provide a regular finitely additive probability measure for the
outcomes of the throw of a dart with a perfectly defined (either perfectly
sharp or perfectly symmetric) tip.
This paper removes the hope for the infinitesimalist strategy that
Bernstein and Wattenberg gave it. This will be done by adapting an
example of Dubins (1975) to show that the Bernstein and Wattenberg
measure, and any measure like it, is pathological. But first I will show that
any measure that assigns an infinitesimal number to every outcome of a
countably infinite lottery will be pathological. The pathology in question
should be particularly galling to Bayesians: the measure allows for setups
where there is a falsehood p, to which one antecedently assigned a low
probability, and which is such that every outcome of an experiment makes
p come out to have a posterior probability only infinitesimally less than
certain. This is, of course, a severe case of failure of conglomerability,
where conglomerability is the property of a probability distribution P
whereby P (A) < x but P (A|T ) > x for every member T of a partition of
the probability space.1 I will then show how a similar pathology makes
pathological any measure that assigns an equal infinitesimal probability to
every number in [0, 1].
Except when I am explicitly considering classical Lebesgue measure, I will
only assume that the probability measures are finitely additive. Defining
countable additivity for measures that take infinitesimal values would be
conceptually problematic.

2. Infinite lotteries

2.1. Pathological confirmation. Suppose it is possible to actually have
a lottery that assigns (positive) infinitesimal probabilities (not necessarily
the same ones) to all positive integers n (for one mathematical
construction, see Benci, Horsten and Wenmackers, 2011). A positive
infinitesimal is an ι such that for every real number x > 0 we have
0 < ι < x. This is equivalent to the condition that for every (finite) natural
number n we have 0 < ι ≤ 1/n.
Given such a lottery, we can then set up the following system by adapting
an example of Dubins (1975; see also Kadane, Schervish and Seidenfeld,
1996) to the case of infinitesimals. First I throw a fair die without showing
you its outcome. If the die lands showing a number other than six, I
independently choose a positive integer according to our lottery. Call this

1For an excellent and highly accessible discussion of conglomerability, see Arntzenius,
Elga and Hawthorne (2004).
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process for choosing the positive integer “Process A”. If the die shows six,
I independently choose a random positive integer in such a way that the
probability of choosing n is equal to 2−n. Call this “Process B”. I then
announce to you the integer I picked, but not the process I picked it by.
Suppose you know with certainty (i.e., probability one) that I am following
this procedure and what number I announced.
Say the number I announced is n. Let H be the hypothesis that the die
comes up with six. The prior probability is P (H) = 1/6. Let us calculate
your posterior probability. Let Xn be the event of my announcing n. Then
P (Xn|H) = 2−n. On the other hand, P (Xn| ∼H) is some infinitesimal ι.
By Bayes’ Theorem,

P (H|Xn) =
P (Xn|H)P (H)

P (Xn|H)P (H) + P (Xn| ∼H)P (∼H)

=
2−n · (1/6)

2−n · (1/6) + ι · (5/6)

=
1

1 + 2n · 5ι
.

Then 0 < 1− P (H|Xn) = 2n · 5ι/(1 + 2n · 5ι) ≤ 2n · ι, and so P (H|Xn)
differs by an infinitesimal from 1 as an infinitesimal multiplied by 2n · 5 is
still an infinitesimal. And this is true no matter which positive integer I
announced as n.
Thus, simply by performing another experiment after the die throw, in a
way that depends on the die throw, and honestly telling you the result the
experiment produced, I can make you be only infinitesimally short of
certainty that the die showed a six, no matter how the die actually landed.
Thus, in five out of six experiments, you will end up being all but certain
of a falsehood that you initially assigned low probability to.
This provides a way in which an agent you know for sure to be perfectly
truthful and omniscient about the relevant domains can mislead you into
assigning probability infinitesimally close to 1 to any falsehood that you
assign a probability non-infinitesimally greater than 0 to, without relying
on any mistaken beliefs on your part. For instance, let us suppose that you
assign probability 10−12 to phlogiston theory. The omniscient and
perfectly truthful agent tells you that if phlogiston theory is false, she will
run Process A, and if phlogiston theory is true, she will run Process B. She
announces to you the number chosen, and using a very similar Bayes’
Theorem calculation to the above, you then assign a probability within an
infinitesimal of 1 to phlogiston theory.

2.2. Error. The die and lottery example assumed that there was no
perceptual error and that you know for sure the procedure that I was
following. This assumption simplifies the calculations, but for greater
realism, we should take into account the possibility that small chances of
error might infinitely overshadow an infinitesimal.
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There are two potential sources of error. One is my misreading the
outcome of the die throw and triggering the wrong process, and the second
is your getting wrong the outcome of the process, due to an error on my or
on your part. We can capture the two sources of error as follows. Let A
(respectively, B) be the event of Process A and not Process B (respectively,
Process B and not Process A) being activated. This time, let Xn be the
event that either Process A or Process B produce result n. Let X∗

n be the
event that you took it to be the case that Process A or Process B
produced n (this can go wrong either through my announcing incorrectly
or your misapprehension). Let H be the die throw resulting in a six.
There are three ways to have a relevant error: we could have a six but not
B (first type of error, when there is a six), we could have a non-six but not
A (first type of error, where there is no six), or we could have one of the
processes produce result a result that you do not take to have occurred
(second type of error). Thus, if E is the event of a relevant error occurring,

(1) E = (∼B&H) ∨ (∼A&∼H) ∨ ∃k(X∗
k &∼Xk).

I will assume P (E) ≤ 1/100. We will also suppose that P (Xn|A&∼H) is
infinitesimal for all n, while P (Xn|B&H) = 2−n.
Our pathological conclusion in the errorless case was that no matter what
you observe, you end up believing H to a degree infinitesimally short of
certainty. Our new pathological conclusion will be that no matter what
number you take to have been produced by Process A or Process B, you
end up believing H ∨ E to a degree within an infinitesimal of certainty,
assuming you begin with P (H ∨ E) being non-infinitesimal and positive.
This is pathological since we know that H ∨ E has at most a
1/6 + 1/100 ≈ 18% chance of being true. Thus most of the time you’ll end
up infinitesimally short of certainty about a falsehood, and unless you are
lucky enough to get other evidence that involves likelihoods that are
infinitesimally close to extreme values, you will never get out of this error
by Bayesian means.
To prove that P (H ∨ E|X∗

n) is within an infinitesimal of 1, we need only
show that P (X∗

n|H ∨ E) is positive and non-infinitesimal while
P (X∗

n| ∼(H ∨ E)) is at most infinitesimal (i.e., zero or infinitesimal) for
every n, in light of the following lemma where we let a be the event H ∨ E
and b be the event X∗

n and we use the observation that if β is positive and
non-infinitesimal and γ is at most infinitesimal, then γ/β is infinitesimal.

Lemma 1. If P (a) is positive and non-infinitesimal, P (b|a) is positive,
and P (b| ∼ a)/P (b|a) is at most infinitesimal, then 1− P (a|b) is at most
infinitesimal.

Proof. Let α = P (a), β = P (b|a) and γ = P (b| ∼ a). Then by Bayes,
P (a|b) = αβ/(αβ + (1− α)γ) = 1− (1− α)γ/(αβ + (1− α)γ). But the
latter fraction is no greater than (1− α)γ/(αβ) while γ/β is zero or
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infinitesimal and α is positive and non-infinitesimal, so that (1− α)γ/(αβ)
is at most infinitesimal. �

The arguments that P (X∗
n|H ∨ E) is positive and non-infinitesimal while

P (X∗
n| ∼(H ∨ E)) is at most infinitesimal are left as an exercise to the

reader.
Now, it is pathological enough that you would need to assign a probability
infinitesimally close to 1 to H ∨ E, no matter which X∗

n occurs. But what
probability should you assign to H then? This depends on further
assumptions. Say that two events, A and B, are not highly correlated
provided that P (A&B) ≤ 10P (A)P (B). You could, then, have a case
where it is reasonable to assume that E is not highly correlated with X∗

n

for any n. We have seen that P (H ∨ E|X∗
n) ≥ 1− ι for a positive

infinitesimal ι for all n. So
1− ι ≤ P (H ∨ E | X∗

n) ≤ P (H | X∗
n) + P (E | X∗

n) ≤ P (H | X∗
n) + 10P (E),

due to the lack of high correlation between E and X∗
n. But P (E) ≤ 1/100,

so P (H | X∗
n) ≥ 9/10− ι. In other words, no matter what turns out, you

should be fairly confident (with credence greater than 0.89) that the die
showed a six, and we can increase the confidence level here simply by
decreasing the probability P (E) of relevant error.
Using a similar line of reasoning, we can relax the idealizing assumptions
in the phlogiston case. If you have an agent capable of running infinite
lotteries of the right sort and whom you are sufficiently confident to be
sufficiently reliable (and in such a way that there is no high correlation
between reports and relevant errors), the agent can convince you, that
phlogiston theory is likely to be true, simply by doing her honest best to
announce the result of Process A if phlogiston theory is false and of
Process B if it’s true. Thus the damage done by the non-conglomerable
probability distribution in Process A cannot be confined to propositions
about lottery outcomes. Once probability distributions with infinitesimal
probabilities for all outcomes are permitted, the damage can easily spread
to other domains. This makes problematic Arntzenius, Elga and
Hawthorne’s (2004) recommendation that we simply accept
non-conglomerable probability distributions where they come up.

2.3. An honest con game. There is another pathological result about
infinite lotteries, paralleling the observation (Kadane, Schervish and
Seidenfeld, 1996, 1230–1231) that if you have merely finite additivity in a
setting without infinitesimals, it can be rational to pay to refuse
information. Good’s Theorem (Good, 1967) rules this out for classical
probabilities. A corollary of our case is that Good’s Theorem fails for
infinite lotteries with infinitesimal probabilities.
Suppose we play a coin toss guessing game. After I have tossed the coin, I
am certainly free to offer you additional information and a chance to
change your guess. It seems there is nothing dishonest about this—one can
always offer someone with whom one has a contract an option to change
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the contract—as long as I honestly communicate to you the additional
information. But if we can have infinite lotteries with infinitesimal
probabilities of outcomes, then I can bilk you out of your money by
honestly communicating additional information.
For suppose I offer you a game where you get $20 if you guess the coin
correctly and you pay me $10 if you guess wrong. Of course, you accept. I
toss the coin. If you guessed wrong, 99% of the time I just reveal the coin
and collect my $10. But 1% of the time when you guessed wrong, and
always when you guessed right, I do the following. If you guessed right, I
independently perform Process A, the infinite lottery on {1, 2, ...} with
infinitesimal probabilities for each outcome. If you guessed wrong, I
independently perform process B, where each positive integer n has
probability 2−n. I then announce

(a) all of the above procedures, including the fact that I offer such a
chance to change the guess in 100% of the cases where you guessed
right and 1% of the cases where you guessed wrong,

(b) the positive integer resulting from my process,

but of course I do not announce whether I performed Process A or B. And
then I ask you if you want to change your guess.
For simplicity, suppose you accept everything I say with certainty.
What should you do? When you learn of my procedures, without learning
of the positive integer, and you find out that I let you change the guess in
1% of the cases where you guessed wrong and in all the cases where you
guessed right, it seems a no-brainer—you should stand pat, since the fact
that I am letting you change the guess is strong evidence that your guess
was correct. But then I announce the positive integer coming from
Process A or B. And now you need to change. Let R be the event of your
initial guess being right. Let Xn be the event of my Process A or B
resulting in n. Then P (Xn|R) is infinitesimal, since if you were right, I
would do the infinite lottery with infinitesimal outcomes, while
P (Xn| ∼R) = 2−n. Applying Lemma 1, we conclude that your posterior for
∼R will be within an infinitesimal of one, and hence your posterior for R
will be at most infinitesimal. Consequently, you should change your guess.
Let us suppose you do what you should do. Then this is a pretty good
game for me. In 99% of the cases where you initially guessed wrong, I get
$10. In 1% of the cases where you initially guessed wrong, you will change
your guess and get $20. And in all the cases where you initially guessed
right, you will change your guess and I will get $10. My expected payoff
from the game is (0.5 · 0.99 + 0.5)($10)− (0.5 · 0.01)($20) = $9.85. My risk
is low: I win in 99.5% of the games I play, and in the few that I lose, I
don’t lose much. It’s a great con game, and it seems quite honest, since
I’m only giving you true information and giving you a chance to change
your guess. Isn’t this an absurd conclusion?
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I also leave it as an exercise to the reader to check that as soon as you hear
(a), it becomes rational for you to pay me $29 to shut up and not go on to
announce my result. And so if I make my announcement of (a) before I
engage in the lotteries, I don’t even have to bother with running the
lotteries—the credible threat of them is good enough to get you to pay me
$29 to stop.
Any probability measure that allows for such things is pathological.
Therefore, any probability measure that assigns infinitesimal probabilities
in a countably infinite lottery is pathological.

3. Uniform measures on [0, 1]

As we saw, any measure that assigns infinitesimal values to the outcomes
of a countably infinite lottery is pathological. But what about a measure
that assigns infinitesimal values to the outcomes of a process with values
on a continuous interval like the Bernstein and Wattenberg (BW) measure
on [0, 1]? Here, I will confine myself to measures like the BW one that
assign the same infinitesimal, ι, to each real number in [0, 1]. I will also
assume that the measure assigns a probability to every element of an
algebra of sets (a collection of sets closed under complementation and
finite union) that contains every countable subset of [0, 1].
It turns out that such a measure is also pathological, if only for the reason
that it can be used to generate something like an infinite lottery. The trick
will be to partition [0, 1] into a collection (of course uncountable) of
countably infinite sets. Then a number X from [0, 1] is picked according to
the BW-measure, and it is announced which member, T , of the partition
the number falls into. Given this information, the exact value of X in
effect provides a countably infinite lottery, with infinitesimal probabilities,
over the members of T .
To be more precise, let T be any partition of [0, 1] into countably infinite
sets, such that every member T of T can be written as {T1, T2, ...} for
distinct elements Ti. (In the Appendix, an explicit construction is given,
without using the Axiom of Choice.) For any number x ∈ [0, 1], there is a
unique member T of T , and a unique positive integer number n such that
x = Tn. Denote this T and n as T (x) and n(x), respectively. Then in our
notation x = (T (x))n(x).
Now, suppose that I throw a fair die and independently select the number
X in [0, 1] as above. I then inform you of the identity of the set T (X)
(perhaps by engaging in a supertask where I tell you all its members, in
the order (T (X))1, (T (X))2, ...). Next, if the die shows something other
than six, I let n = n(X), and if it shows six, I independently of X select a
positive integer number n where the probability of n equals 2−n. I then
announce n.
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Let H be the event of the die showing six. Let ET,n be the event of T (X)
being the set T and of the chosen number being n. This event is
measurable (see the Appendix).
Now, if H happens, then we picked a positive integer n with probability
2−n independently of X. Thus:

P (ET,n|H) = 2−nP (T (X) = T )

for any T ∈ T and positive integer n. Now, observe that the event
T (X) = T holds if and only if X is one of T1, T2, .... Thus by additivity
P (T (X) = T ) ≥ P (X = T1) + ...+ P (X = Tk) = kι, for any finite k. Hence

(2) P (ET,n|H) ≥ 2−nkι,

for all positive k.
On the other hand, if H does not happen, and if T ∈ T , then ET,n happens
if and only if T (X) = T and n(X) = n, i.e., if and only if X = Tn. Thus:

(3) P (ET,n| ∼H) = P (X = Tn| ∼H) = P (X = Tn) = ι,

where the second equality used independence of X and H.
It follows from (2) and (3) that:

P (ET,n| ∼H)

P (ET,n|H)
≤ ι

2−n · kι
=

2n

k

for any positive integer k. The only way this can happen is if the left hand
side of the inequality is zero or infinitesimal. By Lemma 1, it follows that
P (H|ET,n) is within an infinitesimal of one.
So, if it is possible to pick a uniformly distributed number in [0, 1] with
infinitesimal probabilities for individual outcomes, then I can rationally
force you to have a credence within an infinitesimal of one that the die
shows six, simply by performing an experiment and honestly informing you
of its result.
Classical Lebesgue measure prevents this pathology. We can still define the
events ET,n as above. But Lebesgue measure assigns probability zero to
X = Tn and also to T (X) = T , the latter having probability zero by
countable additivity since it occurs when and only when X ∈ {T1, T2, ...}.
Consequently P (ET,n|H) and P (ET,n| ∼H) are both zero, and Bayes’
Theorem cannot be applied in the way we applied it in Lemma 1.
Assuming T ∈ T , it is very tempting to say that X ∈ T (which is
equivalent to T (X) = T ) is “infinitely more likely” than X = Tn in the
Lebesgue case. This temptation should be resisted, since if we succumb,
then we have to say that ET,n is infinitely more likely on H than on ∼H,
and hence that every result we get in the above setup strongly confirms H
over ∼H.

4. Conclusions

The one apparent success in using infinitesimals to handle what classical
probability theory considers to be zero probability events was the
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production of a uniform measure on [0, 1] that assigns an infinitesimal to
each point. Such a measure is mathematically coherent and well-defined.
However, this mathematical success is of no help to confirmation theorists,
since any such measure will be pathological for very much the same reason
that a measure for countably infinite lotteries that assigns infinitesimal
probability to each ticket is pathological. Namely, it allows one to have an
event whose credence—and, one may add, objective chance—is
significantly less than one half and a setup where no matter what results,
one will end up within an infinitesimal of certainty that the event occurred.

Appendix: The construction of T and measurability

First, we need to construct the partition T , and, second, we need to show
that the event ET,n is measurable.
To construct the partition, let T 1 = {0, 1, 1/2, 1/4, 1/8, ...} and then for
any x such that 1/2 < x < 1, let T x = {x, x/2, x/4, x/8, ...}. Then let
T = {T x : 1/2 < x ≤ 1}. We need to show that the members of T partition
[0, 1], i.e., that every member y of [0, 1] is in exactly one of the sets T x. To
see this, suppose that y ∈ [0, 1]. If y = 0, then y ∈ T x if and only if x = 1.
So suppose that y > 0. Let n be the largest natural number such that
2ny ∈ [0, 1]. Observe that 2ny > 1/2, since otherwise 2n+1y would also be
in [0, 1]. I now claim that y ∈ T x if and only if x = 2ny. If we can prove
this, we will have shown that y is in exactly one of the T x, and our proof
that T partitions [0, 1] will be complete. Suppose first that x = 2ny. Then
y = 2−nx, and since T x contains each of x, x/2, x/4, x/8, ..., it must
contain y as well. Conversely, suppose that y ∈ T x where 1/2 < x ≤ 1.
Since y 6= 0, it follows by the construction of T x that y must be of the form
2−mx for some natural number m. Then x = 2my and 1/2 < x ≤ 1. Since
n is the largest natural number such that 2ny ∈ [0, 1], it follows that
m ≤ n. Suppose m < n so that 2 ≤ 2n−m. Then
1 ≤ 2n−m · (1/2) < 2n−mx = 2ny ≤ 1 and so, absurdly, 1 < 1. So m cannot
be less than n, and so m = n. Thus, x = 2ny, and that completes our
proof that T is a partition of [0, 1].
It remains to show that ET,n is measurable for T ∈ T . Observe that ET,n

is equivalent to (X = Tn &H) ∨ (X ∈ T &N = n), where N is an
independent random variable representing the result of picking a random
number among 1, 2, 3, ... with respective probabilities 1/2, 1/4, 1/8, .... The
event X = Tn is measurable, since we assume that singletons are
measurable under our measure on [0, 1] and the event X ∈ T is
measurable, since T is a countable set and countable subsets of [0, 1] are
measurable. It follows that ET,n is measurable.2

2I would like to thank two anonymous readers for a number of very helpful suggestions.
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