The Finite

Alexander Pruss

The problem

Axiomatizing
Applying axioms
Non-standard

Two solution

Physics Metaphysical

Theism

Causal finitism

Thomson's land

Conclusions

The Finite

Alexander R. Pruss

Department of Philosophy Baylor University

May 30, 2019

Descartes on the Finite

The Finite

Alexander Pruss

Descartes

The proble

Axiomatizing
Applying axioms
Non-standard

Two solution
Physics
Metaphysical

Theis

Causal finitism Thomson's lamp Grim reapers Infinite deck

Conclusions

I clearly understand that there is more reality in an infinite substance than in a finite one, and hence that my perception of the infinite, i.e. God, is in some way prior to my perception of the finite, i.e. myself. Whenever I know that I doubt something or want something, I understand that I lack something and am therefore not wholly perfect. How could I grasp this unless I had an idea of a more perfect being that enabled me to recognize my own defects by comparison? — Descartes, Third Meditation

- Descartes' notion of the finite is of what falls short of something else.
- In that sense, even mathematically infinite sets are "finite": the set of integers fall short of the set of rationals, which falls short of the set of reals, etc.
- Is there an argument for God from the mathematically finite?

Infinite proofs

The Finite

Alexande Pruss

Descarte

The problem

Axiomatizing
Applying axion
Non-standard

Two solution

Physics Metaphysica possibility

Theism

Causal finitis

Grim reapers

Conclusions

■ It seems a proof is a sequence of statements each of which is either a premise, an axiom or a consequence of what came before.

Infinite proofs

The Finite

Alexande Pruss

Descarte

The probler Proofs

Proofs
Axiomatizing
Applying axioms
Non-standard
models

Two solution
Physics

Physics Metaphysical possibility

Theisn

Causal finitism
Thomson's lamp
Grim reapers
Infinite deck

onclusions

- It seems a proof is a sequence of statements each of which is either a premise, an axiom or a consequence of what came before.
- But an infinite proof can prove anything:

...

- (-3) Roses stink and roses stink. (By (-4))
- (-2) Roses stink. (By (-3))
- (-1) Roses stink and roses stink. (By (-2))
 - (0) Roses stink. (By (-1))
- A proof is a finite sequence of finite statements each of which is either a premise, an axiom or a consequence of what came before.

Numbers

The Finite

Alexande Pruss

Descarte

The proble

Axiomatizing
Applying axiom
Non-standard
models

Two solutions
Physics
Metaphysical
possibility

Theisn

Causal finitism
Thomson's lamp
Grim reapers
Infinite deck

- The standard mathematical characterization of the finite: a set is finite provided that you can number its members 1, 2, ..., n for some natural number n.
- But what is a natural number?
- We better not include infinite numbers!
- We can characterize the natural numbers as objects that include a special zero object 0 and a successor operation s (i.e., sn=n+1) that satisfies the Peano Axioms, such as that $sn \neq n$, that every number other than 0 is a successor, etc.
- There turn out to be infinitely many axioms.
- We assume that the Peano Axioms are consistent.
- The "Roses stink" argument can now be ruled out.

Problem: Applying the Peano Axioms

The Finite

Alexande Pruss

Descarte

The proble Proofs

Axiomatizing
Applying axioms
Non-standard
models

I wo solution Physics Metaphysical possibility

Theisr

Causal finitism
Thomson's lamp
Grim reapers
Infinite deck

- Let's prove that 2 is a natural number. By definition 2 = ss0.
 - 1 0 is a natural number. (Axiom)
 - 2 For any natural number n, sn is a natural number. (Axiom)
 - If 0 is a natural number, s0 is a natural number. (By 2)
 - 4 So, s0 is a natural number. (By 1 and 3)
 - 5 If s0 is a natural number, ss0 is a natural number. (By 2)
 - 6 So, ss0 is a natural number. (By 4 and 5)
- But to know that this is a proof, we need to know that it has a natural (and hence finite) number of non-axiom steps.
- So we need to know that 4 is a natural number.
- But the analogous proof that 4 is a natural number will take 8 non-axiom steps.
- And we'll need to know that 8 is a natural number.
- Vicious regress!

Reaxiomatizing

The Finite

Alexande Pruss

Descart

The probl

Proofs
Axiomatizing
Applying axioms
Non-standard

Two solution
Physics
Metaphysical
possibility

Theisr

Causal finitism
Thomson's lamp
Grim reapers

- We can add some handy axioms to make the proofs go faster. For instance:
 - s0 is a natural number.
 - ss0 is a natural number.
 - For any natural number n, sssn is a natural number.
- Now we can prove that n is a natural number in at most 2n/3 non-axiom steps.
- We've avoided vicious regress.

Non-standard models

The Finite

Alexander Pruss

escarte)

Proofs
Axiomatizing
Applying axioms
Non-standard

Two solutions
Physics
Metaphysical
possibility

Theisr

Causal finitism
Thomson's lamp
Grim reapers
Infinite deck

- But the problem is that the axioms of arithmetic have non-standard models.
- These are mathematical structures that:
 - satisfy the axioms, but
 - the non-standard naturals include what from our point of view are infinite numbers.
- Given a non-standard model of the naturals, we get non-standard proofs:
 - The steps are numbered with non-standard naturals.
 - The parts of each statement are numbered with non-standard naturals.
- Semantic worry: How do we gain reference to the standard naturals? (Kripkenstein)
- Sceptical worries:
 - How do we know that our naturals are not non-standard from the right point of view?
 - How do we know that what we call "standard proofs" are not actually non-standard?
 - How do we know that we can trust our proofs?

Does it matter?

The Finite

Alexande Pruss

escarte

The proble

Proofs
Axiomatizing
Applying axioms
Non-standard
models

Physics

Theisi

Causal finitism
Thomson's lamp
Grim reapers
Infinite deck

Conclusions

- If we allow non-standard proofs, we will be able to prove new things.
- Some of these are innocent infinite variations on finite statements, like:

$$0 = 0 \& 0 = 0 \& 0 = 0 \& \cdots \& 0 = 0$$

with infinitely many conjuncts.

- But Gödel's Second Incompleteness Theorem shows that there is a non-standard model according to which there is a proof of an inconsistency from the axioms of arithmetic.
- Moreover, there are finite statements that are consistent (no contradiction provable) with respect to standard proof, but inconsistent with respect to some non-standard models of proof.
- This isn't how logic should be.
- And adding more axioms doesn't eliminate all the nasty non-standard models.
- Need some non-axiomatic way to eliminate non-standard models to save the absoluteness of logic.

Physics to the rescue

The Finite

Alexande Pruss

Descart

The proble

Proofs
Axiomatizing
Applying axioms
Non-standard

Two solutions

Physics Metaphysical possibility

Theisn

Thomson's lamp

Grim reapers
Infinite deck

- Writing down a step of a proof takes a minimum amount of time, due to the speed of light limit.
- An infinite proof would take infinitely long.
- We would never have time to get to the conclusion.
- We can say that the finite is what we can finish counting, say at one item a second.

Problems with physics answer

The Finite

Alexande Pruss

Descarte

Proofs
Axiomatizing

Axiomatizing
Applying axioms
Non-standard
models

I wo solutions

Physics Metaphysical possibility

Theisr

Causal finitism
Thomson's lamp
Grim reapers
Infinite deck

- Odd that logic should depend on physics.
- Would logic be different if it turned out that there is an end of time?
- Physics could be done in a non-standard model. How do we know we aren't in that boat? That what physicists call a "finite number of seconds" isn't really infinite?
- What explains why our physics is based on the standard model?
- Are we just lucky? That seems irrational to think!
- But if we are lucky, that solves the semantic problem.

Metaphysical possibility to the rescue

The Finite

Metaphysical possibility

- Perhaps we can use metaphysical necessity to pick out the right models of arithmetic
- A sentence p is m-contradictory provided that it is metaphysically impossible on any interpretation of its names and predicates in terms of existing objects and instantiable properties.
- A model M of arithmetic is m-acceptable provided that the sentences that are logically contradictory according to M are m-contradictory and vice versa.
- A proof is m-acceptable if it is valid according to an m-acceptable M.
- This solves the semantic problem.
- Need an account of metaphysical possibility that does not depend on purely logical possibility. (Note: Some will lead to Cosmological Arguments for God.)
- **Explanatory problem:** Why do we live in a world where our physical proofs match the m-acceptable ones?
- Sceptical worry: And how do we know we do?

Theism to the rescue

The Finite

Alexander Pruss

)escarte

The proble

Proofs
Axiomatizing
Applying axioms
Non-standard

Two solutions
Physics
Metaphysical
possibility

Theism

Causal finitism
Thomson's lamp
Grim reapers
Infinite deck

- Theism provides a solution to the problems with the physics solution.
- Mathematics is grounded in ideas in the mind of God (St. Augustine) or in God's power.
- God thus has direct access to all the models, and can choose one that is m-acceptable or minimal or otherwise giving the right notion of proof.
- God can ensure that our words "finite" or "number" match up with that model, either by ensuring we have a human nature with the right semantic properties or by letting us get the meaning of the words by semantic inheritance from God.
- Or God can ensure that the physical world's time sequence and physical abilities for proof-formation match the correct notion of proof.
- God is likely to do this in order that we may have logical knowledge.
- Theism fills out the physics and metaphysical possibility answers.
- Bonus: Explanation of mathematical beauty.

Warmup: Thomson's Lamp

The Finite

Alexander

)escarte

The probler

The problem

Axiomatizing
Applying axioms
Non-standard

Two solution

Physics Metaphysica

Theisn

Causal finiti

Thomson's lamp Grim reapers

Infinite de

The Grim Reaper Paradox

The Finite

Alexande

Descarte

The proble

Axiomatizing
Applying axiom

Non-standard models

I wo solution:

Physics Metaphysical

Theisn

Causal finitisi

Thomson's lamp

Canalusians

Shuffling cards

The Finite

Alexande

Descarte:

The proble

Axiomatizing
Applying axioms
Non-standard

Two solutions
Physics
Metaphysical
possibility

Theisr

Causal finitism Thomson's lamp Grim reapers Infinite deck

- Suppose I have shuffled an infinite deck of cards numbered 1, 2, 3,
- Two-person game:
 - You and I draw cards from the top of the deck. The person with the biggest number wins.
 - I will be sure that I lost as soon as I see my card.
 - You will be sure that you lost as soon as you saw my card.
 - We'd each be happy to trade!
- I draw 100 cards. After each card I draw, I expect the next one will have a bigger number. But that's stupid!
- To shuffle an infinite deck of cards, use an infinite causal process based on an infinite past:
 - Option 1: On day -n, the deck is divided into groups of n cards, each group being simultaneously shuffled.
 - Option 2: Have numbered particles move on line in a random walk with random distances and have their distances today from a fixed center point determine the deck order

Causal Finitism, I

The Finite

Alexander Pruss

Descarte

The problem Proofs Axiomatizing

Two solutions
Physics
Metaphysical

Theis

Causal finitism
Thomson's lamp
Grim reapers
Infinite deck

- Finitism ("there are no infinities") would rule out all such paradoxes.
- But finitism conflicts with mathematics.
- Causal Finitism: Not possible for infinitely many causes to affect a single event.
- Infinitely Reaper observations or observations of dice cannot affect a single event.
- These and many other paradoxes solved!

Causal Finitism, II

The Finite

Alexande Pruss

_ _____

The probler

Axiomatizing
Applying axioms
Non-standard

Two solutions

Physics Metaphysical possibility

Theisn

Causal finitis

Thomson's lam Grim reapers Infinite deck

- Causal Finitism is a simple principle that rules out many paradoxes.
- But it allows for non-causal infinites, just as mathematics requires.
- We should accept it as true.

Causal Finitism and Counting

The Finite

Alexande Pruss

Descarte

The problem
Proofs
Axiomatizing
Applying axioms
Non-standard
models

Two solution Physics Metaphysical possibility

Theisr

Causal finitism
Thomson's lamp
Grim reapers
Infinite deck

- There are genuinely finitely many Fs provided that it is possible for someone think of each of them in a causal sequence, with each thought triggering the next one, and with there being a last thought in the sequence.
- A causal proof: A proof process where one thinks (or utters) each step, but the first, causally because of a previous.
- A genuine proof: A proof that could be realized as a causal proof.
- The metaphysics of causal finitism picks out the true notion of the finite.
- And constrains physical proofs to fit with it, thereby solving the luck problem with the physics approach.

Causal Finitism and Theism

The Finite

Alexande Pruss

Descart

Proofs
Axiomatizing

Applying axioms
Non-standard
models

Two solution Physics Metaphysical possibility

Theisn

Causal finitism
Thomson's lamp
Grim reapers
Infinite deck

- Causal Finitism underwrites a version of the Kalaam cosmological argument for a first cause:
 - Something causes something.
 - 2 There is no infinite regress of causes. (By Causal Finitism)
 - There is no circularity of causes.
 - 4 So, there is an uncaused cause.
- Of course, further work is needed to move from an uncaused cause to God. (Aquinas, design arguments, the arguments of the earlier talks.)

Conclusions

The Finite

Alexander Pruss

Descarte

Proofs
Axiomatizing
Applying axioms
Non-standard

I wo solution

Physics Metaphysical possibility

Theism

Thomson's lam
Grim reapers

- We need an account of the finite for logic to work.
- The axiomatic account fails.
- The physics account suffers from luck and scepticism problems.
- The metaphysical necessity account suffers from luck and scepticism problems.
- The pure theistic account solves the luck and scepticism problems.
 - Bonus: Beauty of mathematics.
- Causal finitism also solves the luck and scepticism problems. And it underwrites the most controversial premise of the Kalaam argument.

