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Abstract. Consider the regularity thesis that each possible event has non-zero prob-
ability. Hájek challenges this in two ways: (a) there can be nonmeasurable events that
have no probability at all and (b) on a large enough sample space, some probabilities
will have to be zero. But arguments for the existence of nonmeasurable events depend
on the Axiom of Choice (AC). We shall show that the existence of anything like regular
probabilities is by itself enough to imply a weak version of AC sufficient to prove the
Banach-Tarski Paradox on the decomposition of a ball into two equally sized balls, and
hence to show the existence of nonmeasurable events. This provides a powerful argument
against unrestricted orthodox Bayesianism that works even without AC. A corollary of
our formal result is that if every partial order extends to a total preorder while maintain-
ing strict comparisons, then the Banach-Tarski Paradox holds. This yields an argument
that incommensurability cannot be avoided in ambitious versions of decision theory.

1. The main result

Orthodox Bayesianism holds that rational agents need to (a) assign a probability to
each event and (b) the probability assigned to contingent events must be strictly between
zero and one. For if they assign no probability, or an extreme (zero or one) probability,
to an event, then they will be unable to update their credence for the event in a way
that is responsive to the evidence: they will be stuck with either no probability1 or
the same extreme probability no matter what evidence may come. Condition (a) we
can call “unrestrictedness” and together the two conditions make for “regularity”. The
“regularity” constraint is very widely accepted (advocates include Shimony 1955; Kemeny
1955; Jeffreys 1961; Stalnaker 1970; Lewis 1980; Appiah 1985).

The main philosophical purpose of this paper is to argue that regularity fails given
reasonable approximate symmetry conditions on probabilities in three-dimensional Eu-
clidean setups, regardless of whether the Axiom of Choice (AC) is true. I will do so by
giving a theorem that also leads to a second major philosophical conclusion: incommen-
surability cannot be eliminated from ambitious versions of decision theory that apply to
agents who have preferences over large infinite sets of options. But first we need some
background.

Alan Hájek (2011) argues that there are two ways that the regularity thesis fails. It
fails through nonmeasurability: there are events to which no appropriate probability can
be assigned. And it fails due to there being no way to eliminate zero probability events,
such as the event of a dart with a perfectly defined tip hitting a particular point.

However, the arguments for nonmeasurable events use versions of the Axiom of Choice
(AC), which says that for any set A of non-empty disjoint sets, there is a choice-set C
such that C has exactly one element in common with each member of A. Essentially, C
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1This observation in the case of no-probability assignment is due to an anonymous referee.
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REGULARITY 2

chooses one element from each member of A. Assuming the rest of Zermelo-Fraenkel set
theory (ZF) is consistent, AC is known not to be provable from ZF.2

Proofs of the existence of nonmeasurable sets come in two varieties. The most common
variety in the philosophical literature relies on the existence of Lebesgue-nonmeasurable
subsets of the real line, which is proved using a version of AC (see Rudin 1987, 53–54,
for a standard proof). These arguments do not have force, however, against a de Finetti
style Bayesian who works with merely finitely additive probabilities, since the arguments
about Lebesgue measurability assume the countable additivity of probabilities.

The second way to derive the existence of nonmeasurable sets is via the Banach-Tarski
Paradox (the most thorough mathematical account of it is in Wagon 1994). The Banach-
Tarski Paradox is the claim that a solid three-dimensional ball (i.e., solid spherical region
of three-dimensional Euclidean space) can be decomposed into a finite number of disjoint
pieces which can be moved by rigid motions (rotations and translations) to generate two
solid balls of the same dimensions as the original. It immediately follows that any finitely
additive probability measure P that is rigid motion invariant (i.e., P (A) = P (B) if A
can be transformed into B via a rigid motion) and defined on a solid cube Ω in three-
dimensional Euclidean space must have nonmeasurable subsets (one can also prove this
for a ball).

For suppose that P is defined on all subsets of Ω. Let B be a ball in Ω sufficiently
small that two copies of B can fit in Ω. The Banach-Tarski Paradox (BT) then is the
claim that we can write B = A1 ∪ · · · ∪ An ∪ C1 ∪ · · · ∪ Cm (for some finite n and m3),
where all the sets here are pairwise disjoint, and where there are rigid motions ρ1, . . . , ρn
and τ1, . . . , τm such that B1 = ρ1A1∪· · ·∪ρnAn is a disjoint decomposition of one copy of
B while B2 = τ1C1 ∪ · · · ∪ τmCm is a disjoint decomposition of another copy of B. Given
this, by finite additivity and rigid motion invariance:

P (B) =
n∑
i=1

P (Ai) +
m∑
i=1

P (Ci)

=
n∑
i=1

P (ρiAi) +
m∑
i=1

P (τiCi)

= P (B1) + P (B2) = 2P (B).

Subtracting P (B) from both sides, we see that 0 = P (B). But this leads to a contradic-
tion. For suppose N is a natural number such that cube Ω1 whose side-length is 1/N times
the side-length of the cube Ω fits inside B. Then P (Ω1) = 0, and so P (Ω) ≤ N3P (Ω1) = 0
since Ω can be covered with N3 copies of Ω1. But this violates the total probability axiom
P (Ω) = 1.

Note that this is a very general argument. It does not, for instance, assume that the
values of P are real numbers. They might be hyperreals. Or they could be members of an
ordered commutative group with the total probability axiom replaced by the assumption
that P (Ω) > 0.

2For an excellent survey of results about AC, see Howard and Rubin (1998).
3One can take n = 3 and m = 2 and the total number of pieces cannot be reduced below 5 (see

Theorem 4.7 in Wagon 1994), but we won’t take that to be a part of the formal statement of BT.
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Like the proof of the existence of Lebesgue non-measurable sets, the proof of the
Banach-Tarski (BT) Paradox uses AC. Moreover, if ZF is consistent, it is also consistent
with the falsity of BT (Wagon 1994, Th. 13.2).4

BT is counterintuitive and some have even taken it as a reductio of AC (e.g., Borel 1946,
210). However, we prove that regularity assumptions suffice to commit the regularist to a
version of AC sufficiently strong to prove BT. Specifically, we show in ZF, in a very general
setting, that the existence of anything like regular probabilities for all subsets of the unit
interval [0, 1] implies BT, and BT implies the failure of regularity. So if regularity holds,
it fails, and hence regularity fails. Our setting is sufficiently general to subsume both
hyperreal-valued probability and conditional probability (Popper function) approaches.
The proof adapts Pawlikowski’s (1991) proof of BT from the Hahn-Banach Theorem.

Therefore, even without AC, at least one of Hájek’s two attacks on regularity succeeds.
Either there are no regular probabilities defined for every subset of the unit interval or
there are nonmeasurable subsets in any region of three-dimensional Euclidean space big
enough to contain a ball. Moreover, as we shall see, switching from regular probabilities
to conditional probabilities does not solve the problem.

A corollary of our formal result is that it is true in ZF that if every partial order can
be extended to a total preorder while preserving strict inequalities, then BT holds. In
particular, this means that decision theorists and economists who think that all par-
tially ordered preference structures can be totalized are committed to a version of AC
sufficiently strong for BT, which allows us to make an argument for the possibility of
incommensurability in decision theory, independently of AC.

And any assumptions strong enough to prove BT are strong enough to prove the
existence of Lebesgue nonmeasurable sets, given that Foreman and Wehrung (1991) have
proved in ZF that if all subsets of [0, 1] are Lebesgue measurable, then all subsets of
n-dimensional Euclidean space are Lebesgue measurable.5

Our main mathematical result is the following theorem of ZF. A preorder . is a reflexive
and transitive relation. The preorder is total provided that for all x and y, at least one
of x . y and y . x holds. A total preorder is also known as a weak order. We shall write
x < y if and only if x . y and y 6. x, and use PΩ to denote the powerset of Ω.

Theorem 1. Suppose that there is a total preorder . on the countable members of P [0, 1]
such that: (a) if A ⊆ B, then A . B, and (b) if A and B are disjoint sets with B non-
empty and A . B, then A < A ∪B. Then the Banach-Tarski Paradox holds.

In the cases we will discuss, . will be a total preorder on all of P [0, 1], but in the
interests of greatest generality, we give the Theorem in fuller generality.

4Solovay (1970) also showed that, on the assumption that ZF is consistent with the existence of an
inaccessible cardinal, ZF is consistent with all sets in Rn being Lebesgue measurable.

5See also Easwaran (2014) for further discussion of nonmeasurable sets and the Axiom of Choice.
Luxembourg (1973) has shown that the framework of nonstandard analysis used for generating hyperreals
can be used to construct Lebesgue nonmeasurable functions, and the existence of nonmeasurable sets
follows immediately. Since by the work of Bernstein and Wattenberg (1969) nonstandard analysis can
be used to generate regular probabilities for all subsets of [0, 1], and the present paper shows that such
regular probabilities imply BT and hence the existence of nonmeasurable sets, the present paper can
be seen to provide a generalization of Luxembourg’s observation. Not just the existence of hyperreals,
but any set of assumptions that implies the existence of regular probabilities for all subsets of [0, 1]
with values in a totally ordered field (say, in the field of formal power series considered by Laugwitz
1968 and Pedersen MS) or even a totally ordered commutative group implies the existence of Lebesgue
nonmeasurable sets.
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We can think of . as a comparative or “qualitative” probability. Assumption (a) is
a significant weakening of standard axioms for qualitative probabilites (e.g., de Finetti,
1931; Villegas, 1967; Suppes, 1994). Assumption (b) is a weakening of Pruss’s (2013b)
regularity condition that if A is a proper subset of C, then A < C. Thus, by itself,
Theorem 1 shows that the existence of regular qualitative probabilities on all of [0, 1] is
sufficient to generate BT.

We now show how Theorem 1 applies in various scenarios, give a variant that applies
to cases of rotational invariance, and along the way discuss philosophical implications.
Finally, the proof will be sketched in an appendix. As a referee notes, it may seem
surprising that BT follows from non-geometric premises about orderings on subsets of
[0, 1]. But the surprise should diminish when we consider that BT follows from AC, which
is not normally taken to be a geometric claim (interestingly, too, there is a geometric
formulation of AC: Bell and Fremlin 1972).

2. Extensions of probability

Hájek (2003) used a counting argument to prove that there is no hope for a classical
real-valued probability assignment to be regular—i.e., assign non-zero probability to each
non-empty subset—if we have a sample space of uncountable cardinality, say [0, 1].6 So
the interesting cases will be where we are dealing with some extension of the classical
notion of probability.

For instance, the conditions of Theorem 1 apply to regular K-valued probabilities for
any totally ordered field K, say that of the hyperreals (e.g., Skyrms 1980). Here, we say
that P is a K-valued probability on an algebra (i.e., collection closed under finite unions
and complements) F of subsets of Ω provided that we have the Kolmogorov axioms with
finite additivity:

(K1) P (A) ≥ 0
(K2) P (Ω) = 1
(K3) If A and B are disjoint, P (A ∪B) = P (A) + P (B).

And P is regular provided that P (A) > 0 for every non-empty A. To see that the
Theorem applies, note that if P is a regular K-valued probability on P [0, 1], then the
preorder defined by A . B if and only if P (A) ≤ P (B) clearly satisfies the conditions of
Theorem 1. Thus, if we have regular K-valued probabilities on all subsets of [0, 1], we
have BT.

Even more generally, we could suppose that K is a commutative group with a compat-
ible total order ≤ (the compatibility means that if a ≤ b, then a+c ≤ b+c for any c) and
drop K2 (since the element 1 in the group may not be defined), and the same argument
would show that the existence of a regular K-valued probability for all subsets of [0, 1]
implies BT.

6Hájek’s proof uses the assumption that a countable union of finite sets is countable. But while this
claim in its full generality uses a version of AC, Hájek only needs the claim that a countable union of
finite sets of real numbers is countable, which can be proved without AC since the real numbers have a
total order. To see this, suppose A =

⋃∞
i=1Ai, where the Ai are finite sets of real numbers. Let B1 = A1

and Bn = An −
⋃n−1
i=1 Ai for n > 1. Then A =

⋃∞
i=1Bi, and the Bi are disjoint and finite. Let ni = |Bi|

and let bi,k, for 1 ≤ k ≤ ni, be the kth smallest member of Bi (where “smallest” is understood relative
to the ordinary arithmetical total order on the reals). Then we can enumerate the members of A as
follows: b1,1, . . . , b1,n1 , b2,1, . . . , b2,n2 , b3,1, . . . , b3,n3 , . . . . Making this precise uses only ZF.
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Now let Ω ⊆ R3 be a solid cube. Then Ω has the same cardinality as [0, 1] (this can be
proved in ZF) and so there is a regular K-valued probability on PΩ if and only if there is
one on P [0, 1], since a probability on the one space can be transformed into a probability
on the other by applying the bijection or its inverse. Thus this follows in ZF:

Corollary 1. For no commutative totally ordered group K are there K-valued regular
rigid-motion invariant probabilities for all subsets of a solid cube.

For if there are K-valued regular probabilities on PΩ, then by Theorem 1, BT holds,
and hence there aren’t any rigid-motion invariant ones.

Corollary 1 is also an easy consequence of the main results of Pruss (2013b), whence
this follows more generally for any subset Ω of Rn containing a circle.

But in our three-dimensional setting, and in the case where K is a totally ordered field,
say a hyperreal field, we can prove something stronger than Corollary 1. Any totally-
ordered field K contains an isomorphic copy of the rational number field Q. Without loss
of generality, we suppose that Q is a subfield of K. We can then define a standard-value
function St : K → R ∪ {−∞,∞} that preserves the arithmetic operations, except where
infinities are concerned (just set Stx = sup{y ∈ Q : y ≤ x}, where the supremum is the
one defined for subsets of R). For any x ∈ Q, we have Stx = x, and if K is actually an
extension of R, like the hyperreals are, this is true for any x ∈ R.

Say that x ∈ K is infinitesimal provided that x 6= 0 and St x = 0. (This holds
provided that 0 < |x| < 1/n for all natural numbers n.) Write x ≈ y provided that
x = y or x − y is infinitesimal. This is an equivalence relation. We say that P on PΩ
is approximately rigid motion invariant provided that P (ρA) ≈ P (A) whenever ρ is a
rigid motion and A and ρA are subsets of Ω. While by Pruss (2013b) there are no rigid
motion invariant K-regular probabilities for all subsets of a circle (or the interval, for
that matter), Bernstein and Wattenberg (1969) have shown that there are approximately
rigid motion invariant regular hyperreal-valued probabilities on the circle and interval,
while Parikh and Parnes (1974) have shown that these can be taken to satisfy the even
stronger condition that P (ρA)/P (A) ≈ 1 for every non-empty A.7

But BT implies that one cannot define approximately rigid motion invariant probabil-
ities on a cube Ω. For the argument in Section 1 generalizes to show that if P is such a
probability assignment, then P (B) ≈ 2P (B). Hence P (B) ≈ 0. Once again, by covering
the cube Ω by copies of a cube small enough to fit inside B, we conclude that P (Ω) ≈ 0,
which violates the total probability axiom K2. One can also show that the same result
holds where Ω is a ball.8 Thus the following holds in ZF:

Corollary 2. For no totally ordered field K are there regular K-valued approximately
rigid motion invariant probabilities on all subsets of a solid cube or ball Ω.

This is the first of our two major philosophical upshots.
Corollary 2 is philosophically even more interesting than the result for exact rigid

motion invariance. Rigid motion invariance seems to be a reasonable symmetry condition
to have on our credences when we want a uniform measure on some set in Euclidean space,
for instance when we know that a particle or other object with a perfectly defined center

7The two conditions coincide where P (A) is non-infinitesimal, but where P (A) and P (ρA) are both
infinitesimal, we automatically have P (ρA) ≈ P (A), while the ratio condition need not be satisfied.

8By adding an extra translation, in the setting of our BT paradox we can actually suppose that⋃m
i=1 τiCi equals B rather than the disjoint copy B1 (in fact, normally this is what is proved in proofs

of BT). If B = Ω, then we get P (B) ≈ 0 and an immediate violation of K2.
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is in some location of a region but have no further information favoring one place over
another. But one might think that our intuitions about symmetry do not cut so finely as
to force our credences to be exactly rigid motion invariant. Maybe our credences in such
cases are only rigid motion invariant up to infinitesimal differences. Or, better, one might
think that if we simply have no intuitions about infinitesimal differences, our doxastic
state in such symmetric situations should be modeled as not just a single probability
function but a family of all the regular approximately invariant hyperreal probabilities
(for a recent discussion of family-based approaches to credences, see Joyce 2010).

The above is enough to show that unrestricted Bayesianism—a Bayesianism on which
every contingent event has a non-zero probability—fails as a theory of doxastic rationality
full stop. For we can imagine cases—like that of the particle with the unknown location—
where the only appropriate probability functions are going to be at least approximately
rigid motion invariant. For the same reasons, Bayesianism fails as a theory of doxastic
rationality for ideal agents, since such agents could be faced with such cases. Unrestricted
Bayesianism is ambitiously meant to be applicable in all cases (this could be a stipulation)
and so fails.

However, these cases present no difficulty for a modest Bayesianism that makes it a
theory of doxastic rationality applicable in a limited though surprisingly broad array of
cases or as a toy model for doxastic rationality (see Horwich 1993 for one author with
such a limited view of Bayesianism). Thus, the above provides an argument for such
modesty in Bayesianism.

The fact that the failures involve nonmeasurable sets does not save the more ambitious
forms of Bayesianism. After all, a particle’s location being in some nonmeasurable set
just is another contingent event, and the ambitious forms of Bayesianism are meant to
apply to all contingencies. And few Bayesians will want to completely rule out a priori
the possibility that nonmeasurable sets are deeply involved in our physics, for instance
as in Pitowsky’s (1989) interpretation of quantum mechanics centered on nonmeasurable
sets.

One might wonder why it matters whether AC is invoked in our corollaries. After
all, most mathematicians seem to use AC as a matter of course. And the Hahn-Banach
Theorem, which is sufficient for BT (Pawlikowski 1991), is central to functional analysis.
Isn’t BT, backed up by AC or at least Hahn-Banach, enough to show that ambitious
Bayesianism fails?

But Hofweber (MS) has recently argued in response to the anti-regularity arguments of
Pruss (2013a) that the choice of the space of values K for a probability measure should be
specific to the particular problem one is working on. While Hofweber himself (personal
communication) has no difficulties with AC, one might generalize his point. Just as some
problems call for a particular hyperreal space of values, our Bayesian could say that some
problems call for a particular model of ZF (this, of course, fits best with a structuralist
philosophy of mathematics, though a Platonist could also say this). Thus in cases where
approximate rigid motion invariance is the right assumption to make, we might work
with a model of ZF in which every subset is measurable, like Solovay’s model (1970). But
Corollary 2 shows that this does not solve the problem—any model of ZF that allows
for regular probabilities on a cube or ball ensures that these probabilities are not even
approximately invariant.

There is another, more speculative, philosophical implication even if we do not think
invariance should be required for probabilities (e.g., Hofweber 2013) and are unbothered
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by AC. For Bayesianism to be useful to finite agents like us, even somewhat idealized
ones, and if credences are to be modeled by a single probability function, then that single
probability function needs to be definable—there needs to be an explicit finite description
of that function, say in ZF+AC, that is uniquely satisfied by it.

Now it seems unlikely that the paradoxical decomposition in the BT Paradox is ex-
plicitly definable in ZF+AC. But the methods of proof behind Theorem 1 (including the
work we reference from Pawlikowski 1991 and Wagon 1994) are explicitly constructive in
that given a total preorder on the subsets of the ball, with the preorder satisfying the
conditions of Theorem 1, we can give an explicit construction of a BT decomposition.
But likewise one can give an explicit construction of a bijection between [0, 1] and a ball.
Consequently, given a preorder on [0, 1] satisfying the requisite conditions, one can ex-
plicitly construct from it a BT decomposition. Thus, if one could explicitly construct
regular probabilities on P [0, 1] in ZF+AC (whether these are K-valued probabilities for
some commutative group K or just qualitative probabilities), we could also explicitly
construct a BT decomposition. Since it is unlikely that a BT decomposition is explic-
itly definable in ZF+AC, it is also unlikely that an assignment of regular probabilities
for all subsets of [0, 1] is definable. Thus, probably, either we should take Bayesianism
not to apply to agents like us or we should take the family-of-assignments view. But
the argument is speculative, because it might turn out that a paradoxical decomposition
is definable, just as Kanovei and Shelah (2004) have surprisingly shown that there is a
definable nonstandard model of the reals.

3. Concentric spheres

One might try to decrease the force of the above arguments against unrestricted
Bayesianism by noting that it is difficult to imagine a natural process that produces
a point uniformly distributed over a cube or a ball, with a sharp cutoff at the boundary
of the cube or ball. Of course, the unnaturalness of the cases should not matter when
we are dealing with a general theory of rationality, idealized or not, but the force of the
examples against more modest versions will be greater if we have more natural cases to
work with. To that end, we consider more rotationally invariant distributions.

The way that BT is actually proved—and this includes the methods of Pawlikowski
(1991) and Wagon (1994) that we are using—is that along the way we get a paradoxical
decomposition of a sphere (i.e., the surface of a ball). Specifically, it is proved that any
sphere S has a partition A1, . . . , An, C1, . . . , Cm and there are rotations ρi and τi about S’s
center such that ρ1A1, . . . , ρnAn partition S and τ1C1, . . . , τnCn also partition S. Here,
sets X1, . . . , Xn partition a set X provided they are pairwise disjoint and their union is
X.

Suppose that a single sphere has such a paradoxical decomposition. Then we can more
generally prove a paradoxical decomposition of union of concentric spheres, simply by
combining rescaled versions of the paradoxical decomposition of one sphere.9 Thus the
same methods that prove our Theorem 1 also prove:

Theorem 2. Suppose there is a total preorder on the countable subsets of Ω satisfying
the conditions of Theorem 1. Let Ω be a non-empty union of spheres in R3 concentric

9Without loss of generality the center is 0. Let S be one of the concentric spheres in Ω, with ra-
dius r. Suppose A′1, . . . , A

′
n, C

′
1, . . . , C

′
m and there are rotations ρi and τi about S’s center such that

ρ1A
′
1, . . . , ρnA

′
n partition S and τ1C

′
1, . . . , τnC

′
n also partition S. Let R = {α ∈ (0,∞) : αS ⊆ Ω}, where

αA = {αa : a ∈ A}. Then let Ai =
⋃
α∈R αA

′
i and Ci =

⋃
α∈R αC

′
i.
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about x0. Thus, there is a partition A1, . . . , An, C1, . . . , Cm and rotations ρi and τi about
x0 such that ρ1A1, . . . , ρnAn partition Ω−{0} and τ1C1, . . . , τnCn also partition Ω−{0}.

We can define approximate rotational invariance analogously to our definition of ap-
proximate rigid motion invariance. The following is then true in ZF:

Corollary 3. Let Ω be a non-empty region of R3 invariant under rotation about x0 and
let K be any totally ordered field. Suppose P is a K-valued regular probability on PΩ that
is approximately invariant under rotations about x0. Then P ({x0}) ≈ 1.

To see this, note that the result is trivial if Ω = {x0}. If Ω 6= {x0}, then Ω − {x0}
is a nonempty union of concentric spheres. The existence of K-regular probabilities on
Ω yields a total preorder on [0, 1] satisfying the conditions of Theorem 1, since that
preorder can be restricted to the subsets of any one of the spheres in Ω, and each sphere
has the same cardinality as [0, 1]. Thus, Ω− {x0} has a paradoxical decomposition as in
Theorem 2, so:

P (Ω− {x0}) =
n∑
i=1

P (Ai) +
m∑
i=1

P (Ci)

≈
n∑
i=1

P (ρAi) +
m∑
i=1

P (τCi)

= P (Ω− {x0}) + P (Ω− {x0}) = 2P (Ω− {x0}).

Hence P (Ω− {x0}) ≈ 0, and so P ({x0}) ≈ 1.
Thus, the only way to get a K-valued regular probability that’s approximately invariant

is in the trivial case where the probability of being away from x0 is infinitesimal (in which
case approximate invariance comes for free).

The results also generalize to the case of a totally ordered commutative group K. Here,
we will need to define x ≈ y as holding provided that n|x − y| ≤ |P (Ω)| (where |a| is
a if a ≥ 0 and is −a otherwise) for all natural n. (We leave such generalizations as an
exercise to the reader, and we also leave it to the reader to formulate versions for purely
qualitative probabilities.)

But now cases of rotational invariance under a single center without any sharp cutoffs at
boundaries are natural, in a way in which uniform distribution over a ball or a cube is less
so. For instance, imagine a particle (or other object) with a perfectly defined location
released at a time t0 at some point x0 of Euclidean space and executing a Brownian
motion, and for any time t1 > t0, consider the location of the particle. By the symmetries
in Brownian motion, the probability distribution of the location of the particle will be
invariant or at least approximately invariant under rotations about x0, and the probability
that the particle will be precisely at x0 will be at most infinitesimal (infinitesimal if we
require regularity). To visualize this, note that the distribution of the position will
be a symmetric three-dimensional Gaussian centered on x0, with standard deviation
proportional to

√
t1 − t0. So by Corollary 3, there are noK-valued regular probabilities on

PR3 appropriate to this scenario. And of course, apart from Brownian motions, Gaussian
probability distributions are extremely natural and occur with with great frequency in
statistical models—they are called “normal distributions” after all.

The naturalness of cases like this limits the applicability of Bayesianism.
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4. Conditional probabilities

While orthodox unrestricted Bayesianism assumes regular probabilities, a different way
to handle problems of zero-probability subsets is instead to take conditional probabilities
as primitive (Hájek 2003). Then although there may be zero-probability events, we can
still condition on them, and that is what Bayesians really want. We shall show that this
does not escape the problems associated with BT.

A full conditional probability (Krauss 1968) on an algebra F of subsets of Ω is a real
valued function P on F × (F − {∅}) with the properties:

(CP1) for each fixed non-empty B, the function P (−|B) is a finitely additive probability
(i.e., satisfies (K1)–(K3) for K = R) with P (B|B) = 1,

(CP2) if A ⊆ B ⊆ C, then P (A|B)P (B|C) = P (A|C).

This is easily checked to be the same as a Popper function with every non-empty set
being normal (see van Fraassen 1976 for definition). And if we want, we can generalize
full conditional probabilities to have values in some other ordered field K if we like.

The existence of full conditional probabilities (as well as of hyperreal-valued regular
probabilities) on the powerset of arbitrary non-empty set was proved using AC by Krauss
(1968). It is easy to see that for any totally ordered field K, the existence of K-valued
regular probabilities implies the existence of full conditional probabilities (see Krauss
1968 and McGee 1984). We show that the existence of full conditional probabilities on
all subsets of [0, 1] is sufficient for the conditions of the Theorem and hence for BT.

Given full conditional probabilities on F , stipulate A . B if and only if P (A|A∪B) ≤
P (B|A ∪ B).10 Reflexivity and totality of . are immediate. Transitivity is a touch
more difficult. Suppose A . B and B . C. Then P (A|A ∪ B)P (A ∪ B|A ∪ B ∪
C) ≤ P (B|A ∪ B)P (A ∪ B|A ∪ B ∪ C), and so by CP2 we have P (A|A ∪ B ∪ C) ≤
P (B|A ∪ B ∪ C). By the same reasoning P (B|A ∪ B ∪ C) ≤ P (C|A ∪ B ∪ C). Thus,
P (A|A ∪ B ∪ C) ≤ P (C|A ∪ B ∪ C). If P (A ∪ C|A ∪ B ∪ C) > 0, then we can divide
both sides of the inequality by P (A ∪ C|A ∪B ∪ C) and get P (A|A ∪ C) ≤ P (C|A ∪ C)
by C2, and hence A . C. Suppose now P (A ∪ C|A ∪ B ∪ C) = 0. Then by C1, we
have P (B|A ∪ B ∪ C) = 1. Thus, by C2, P (B|B ∪ C)P (B ∪ C|A ∪ B ∪ C) = 1 and so
P (B|B ∪C) = P (B ∪C|A∪B ∪C) = 1. Since B . C, we have P (C|B ∪C) = 1 as well,
and so P (C|A∪B ∪C) = P (C|B ∪C)P (B ∪C|A∪B ∪C) = 1. But this contradicts the
claim that P (A ∪ C|A ∪B ∪ C) = 1.

We now need only check that . satisfies the regularity condition (b) in Theorem 1.
Suppose A and B are distinct, B is non-empty and A . B. To obtain a contradiction,
suppose we do not have A < A∪B. By totality, we have A∪B ≤ A. Thus, P (A∪B|A∪
(A ∪ B)) ≤ P (A|A ∪ (A ∪ B)). But the left-hand-side equals 1, so the right-hand-side
does as well. Thus, P (A|A∪B) = 1. Since A and B are disjoint, it follows from C1 that
P (B|A ∪B) = 0, which contradicts A . B.

Thus if there are full conditional probabilities on P [0, 1], then BT holds. Moreover,
by Theorem 2 there is a paradoxical decomposition of a union of concentric spheres.
Analogously to Corollary 3, we then have in ZF:

10A different way of generating a preorder out of conditional probabilities is given by de Finetti (1975):
say that A . B if and only if P (A−B|A∆B) ≤ P (B−A|A∆B), where A∆B is the symmetric difference
(A−B) ∪ (B −A). This ordering has the advantage that if A is a proper subset of B, then A < B, but
it is somewhat harder to prove transitivity and so this isn’t the definition I use here.
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Corollary 4. Let Ω be any region in R3 invariant under rotation about x0 and suppose
that there are full real-valued conditional probabilities P on PΩ that satisfy the invariance
condition P (ρA|Ω) = P (A|Ω) for any rotation ρ about x0. Then P ({x0}|Ω) = 1.

And if our conditional probabilities take values in some other totally ordered field K,
then at least we get P ({x0}|Ω) ≈ 1. So we see that there is no way to avoid the problems
of nonmeasurable sets, even in rather natural cases like the Brownian motion one, by
moving to conditional probabilities and denying AC.

5. Order extension and incommensurability

Next consider the following two claims:

(OE1) Any partial order extends to a total order.
(OE2) Any partial order extends to a total preorder while maintaining strict inequality:

if ≤ is a partial order on a set X, then there is a total preorder ≤∗ on X such
that if x < y, then x <∗ y.

In set theory, OE1 is known as the order extension principle. Szpilrajn (1930) proved
OE1 using AC, and of course OE2 is an immediate consequence. Felgner and Truss
(1999) have shown that, assuming ZF is consistent, OE1 is strictly weaker than the
Boolean Prime Ideal Theorem, which in turn is known to be strictly weaker than AC. It
is not known if OE2 is strictly weaker than OE1. And it appears to be unknown whether
OE1 implies BT. We cannot settle whether OE2 is weaker than OE1, but we can show
that OE2, and hence OE1, implies BT.

Corollary 5. If OE2 holds, then the Banach-Tarski Paradox holds.

For let ≤∗ be an extension of ⊆ on P [0, 1] satisfying the conditions of OE2. Then if A
is a proper subset of B, we have A <∗ B by OE2, and hence the conditions of Theorem 1
are satisfied.

This shows that whether or not the Banach-Tarski Paradox holds, incommensurability
cannot be eliminated from decision theory, or at least an ambitious decision theory.

For if BT holds, then we will have incommensurability in three dimensional situations
that are symmetric under rigid motions. Suppose a point is uniformly chosen in some
cube Ω, and for any subset C of the cube let GC be the gamble that pays a dollar if the
point is in C and otherwise pays nothing. The following three claims are very reasonable,
where . is a rational agent’s non-strict reflexive and transitive preference comparison
between gambles and < is the corresponding strict preference (GC < GD if and only if
GC . GD but not GD . GC):

(P1) If C is a subset of Ω and τ is a rigid motion such that τC is a subset of Ω disjoint
from C, then it is not the case that GC < GτC .

(P2) If C and D are disjoint subsets of Ω, and C ′ and D′ are also disjoint subsets of
Ω, with GC . GC′ and GD . GD′ , then GC∪D . GC′∪D′ .

(P3) If B1 and B2 are two disjoint balls in Ω of the same size, then GB1 < GB1∪B2 .

The reason for the disjointness condition in P1 is that it is possible to have cases where
a set A is a proper subset of a rigid motion τA of itself and in that case one might think
there is strict domination (see discussion in Pruss, 2013b).

Given BT and P1–P3, it follows that there are cases of incommensurability, i.e., gambles
GC and GD such that neither GC . GD nor GC . GD. For assume for reductio that there
is universal commensurability, i.e., that GC . GD or GD . GC for all C and D. Write
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GC ∼ GD provided that both GC . GD and GD . GC . Then, P1 plus commensurability
implies:

(P1′) If C is a subset of Ω and τ is a rigid motion such that τC is a subset of Ω disjoint
from C, then GC ∼ GτC .

For by commensurability, GC . GτC or GτC . GC . If both hold, then we have GC ∼ GτC

as desired. If only one of the two inequalities holds, then it holds strictly, i.e., GC < GτC

or GτC < GC . The first option violates P1 directly, while the second also violates it when
we notice that it would follow that Gτ−1C′ < Gτ−1C′ , where τ−1 is the inverse of τ and
C ′ = τC. Moreover, two applications of P2 yield:

(P2′) If C and D are disjoint subsets of Ω, and C ′ and D′ are also disjoint subsets of
Ω, with GC ∼ GC′ and GD ∼ GD′ , then GC∪D ∼ GC′∪D′ .

Now, by a slight modification of BT it is possible to decompose a sufficiently small ball
B in Ω into two balls B1 and B2 of the same size as B that are not only disjoint from
each other but that are also disjoint from B (we just have to shift the two balls in the
BT decomposition of B in such a way that they don’t overlap B, which we can do if the
balls are small enough relative to the size of the cube Ω). Specifically, it will be possible
to have a disjoint decomposition B = C1 ∪ · · · ∪Cm ∪D1 ∪ · · · ∪Dn and rigid motions τi
and ρi such that τ1C1 ∪ . . . τmCm is a rigid decomposition of B1 and ρ1D1 ∪ . . . ρnDn is a
rigid decomposition of B2. Let C = C1 ∪ · · · ∪Cm and D = D1 ∪ · · · ∪Dm, and note that
B = C ∪D. Then GCi

∼ GτiCi
and GDi

∼ GτiDi
by P1′, and by repeated application of

P2′ we have GC ∼ GB1 and GD ∼ GB2 . By P2′ it follows that GB = GC∪D ∼ GB1∪B2 .
By P1′ we have GB ∼ GB1 , and so GB1 ∼ GB1∪B2 , which violates P3.

Thus, given P1–P3, we get incommensurability. Moreover, it’s a particularly surprising
incommensurability: if we track through the proof, we find that to obtain a contradiction
we only needed the commensurability claim that if C ′ is obtained from C by a rigid
motion, then GC and GC′ are commensurable. Thus given BT there will be pairs of sets
equivalent under rigid motions gambling on which is incommensurable.11

If, on the other hand, BT does not hold, then by Corollary 5 there are partially ordered
preference structures that cannot be extended to total preference structures while preserv-
ing strict preferences. But non-total preference structures are precisely ones where there
are incommensurable options, i.e., A and B such that neither A is at least as preferable
as B nor B is at least as preferable as A. Thus, if BT does not hold, incommensurability
cannot be eliminated from some preference structures.

Since OE1 (and hence OE2) can be proved without the Axiom of Choice in the case of
finite ordered sets, this lack of a totalization will only happen for some infinite preference
structures, and one might be willing to bite the bullet and say that we humans only have
preferences between finitely many options. This would yield a less ambitious decision
theory, one that does not apply to unnatural scenarios far beyond us. But in fact, one
preference structure that cannot be totalized without BT seems very natural. Suppose

11A similar but simpler argument based on the Hausdorff Paradox rather than the Banach-Tarski
Paradox is given in Pruss (forthcoming), but it is not known whether an analogue of our Theorem 1
holds for the version of the Hausdorff Paradox used in that argument. It is also tempting to give an even
simpler argument that BT implies incommensurability: BT implies the existence of nonmeasurable sets,
and equal gambles on nonmeasurable sets are incommensurable. But the principle that equal gambles
on nonmeasurable sets are incommensurable would need refinement. If one set is a proper subset of the
other or if the outer measure of one is less than or equal to the inner measure of the other then plausibly
there will be a rational preference between the corresponding gambles.
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a number X is randomly chosen in [0, 1] with every number in [0, 1] being possible (the
distribution may be, but does not have to be, uniform), and suppose your preferences
are between gambles GA, for A ⊆ [0, 1], where the gamble GA pays a million dollars
(or even some particular infinite payoff, if we want to make things more exciting) if X
ends up in A, and otherwise pays nothing. It is quite reasonable to prefer GB to GA

whenever B is a proper superset of A. But Theorem 1 shows that if BT holds, then
this preference structure cannot be extended to a total preorder while preserving strict
preferability. A decision theory ambitious enough to handle this case thus needs to take
account of incommensurability. And typical formal theories assume axioms that rule out
incommensurability.

6. Conclusions

The Banach-Tarski Paradox makes it impossible to have rigid-motion invariant prob-
abilities for the outcome of a process that selects a point in a three-dimensional cube, or
even probabilities that are invariant up to infinitesimal differences. In situations where
the credences should be rigid-motion invariant, at least up to infinitesimal differences, un-
restricted Bayesianism fails if the Banach-Tarski Paradox holds. But the Banach-Tarski
Paradox can be proved without reliance on the Axiom of Choice from assumptions that
the unrestricted Bayesian is apt to accept, such as that there are regular probabilities for
all subsets of the cube—perhaps with hyperreal values—or that there are Popper-style
conditional probabilities that let us non-trivially condition on each nonempty subset of
the cube.12 Thus, unrestricted Bayesianism fails to account for situations with the kinds
of symmetries that obtain here.

Likewise, it can be shown without using the Axiom of Choice that a decision theory
ambitious enough to deal with certain infinitary cases must account for incommensu-
rability. Either, the Banach-Tarski Paradox holds, in which case there will be pairs of
events that lack probability comparisons, and hence gambles on them will have values
incommensurable with one another, or the Banach-Tarski Paradox fails to hold, in which
case there will be partial preference structures that cannot be totalized.

Appendix: Sketch of proof of the Theorem

Pawlikowski (1991, Lemma and Note 1) essentially showed how to prove in ZF:

Lemma 1. Suppose that for every pairwise disjoint collection B of countable subsets of
R3 there is a function φ that assigns to each member B ∈ B a collection φ(B) of subsets
of B with the properties:

(i) If B ∈ B, A ∈ φ(B) and A ⊆ A′ ⊆ B, then A′ ∈ φ(B)
(ii) If B1, B2, B3, B4 are disjoint non-empty subsets of a B ∈ B, then (a) at most one

of the sets Bi is a member of φ(B) and (b) at least one of the sets B − Bi is a
member of φ(B).

Then the Banach-Tarski Paradox holds.

A few things need to be noted. First, Pawlikowski in his paper works with a general
set X rather than a subset of R3, but it is clear from the methods of Wagon (1994,
Chapters 1–3) that only the case where X is a sphere in R3 matters for BT. Second, the

12I.e., condition in such a way that P (∅|A) = 0 if A 6= ∅. The formal definition of Popper functions
(van Fraassen 1974) allows for abnormal sets A such that trivially P (B|A) = 1 for all B, even if B = ∅.
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collection corresponding to our B that Pawlikowski works with is the set of orbits under
a free group F on two generators. Since the group F is obviously countable, these orbits
are all countable sets.13 Third, Pawlikowski formulates his proof and remarks in terms of
a direct sum of boolean algebras. His work can all be easily reformulated in the setting
of our Lemma 1, or else one can apply Pawlikowski Note 1 after letting B be the boolean
direct sum of the boolean algebras PB as B ranges over the members of B, and letting
his set D be the set of elements of B of the form

∨n
i=1〈Di〉 for Di ∈

⋃
B∈B φ(B).

Our Theorem 1 follows immediately from Lemma 1 and:

Lemma 2. Suppose that there is a total preorder . on the countable members of PR3 such
that: (a) if A ⊆ B, then A . B, and (b) if A and B are disjoint sets with B non-empty
and A . B, then A < A∪B. Then the function φ defined by φ(B) = {A ⊆ B : B−A < A}
satisfies conditions (i) and (ii) of Lemma 1.

For there is a bijection of R3 with [0, 1] (this is provable in ZF) and so the existence
of the preorder in Lemma 2 follows from the existence of the preorder assumed in the
Theorem, and hence BT follows from Lemma 1.

And since the methods of Wagon (1994) that Pawlikowski invokes prove BT by first
constructing a paradoxical decomposition of the sphere, we also get Theorem 2.

It remains to prove Lemma 2. Write X ∼ Y whenever X . Y and Y . X.

Proof of Lemma 2. Suppose A ⊆ A′ ⊆ B and A ∈ φ(B). Then A . A′. Moreover, we
have B −A′ ⊆ B −A and so B −A′ . B −A. Thus, B −A′ . B −A < A . A′ and so
A′ ∈ φ(B). We thus have (i) from Lemma 1.

Observe that for each A ⊆ B, at most one of A and B − A is in φ(B).
Now suppose that B1, B2, B3, B4 are disjoint non-empty subsets of B. Suppose first

that Bi ∈ φ(B) and j 6= i. Then Bi ⊆ B−Bj by disjointness and so B−Bj ∈ φ(B), and
hence Bj /∈ φ(B). This yields (ii)(a) in Lemma 1.

It remains to show (ii)(b) in Lemma 1. Suppose i is such that Bi 6. B−Bi. By totality,
we have B−Bi < Bi and so Bi ∈ φ(B). We know this can happen for at most one of the
i. Thus, there are at least three distinct indices i such that Bi . B −Bi. Let I be a set
of three such indices. If any one of the Bi . B−Bi inequalities is strict, we have (ii)(b).

So suppose that none of the inequalities are strict. Thus, Bi ∼ B − Bi for i ∈ I. Fix
distinct i and j in I. Then Bi ∼ B−Bi and Bj ∼ B−Bj. By disjointness Bi ⊆ B−Bj,
so Bi . B − Bj . Bj. By the same token Bj . Bi, and so Bj ∼ Bi. But i and j were
arbitrary distinct indices in I. Thus, if now we write I = {i, j, k}, we have Bi ∼ Bj ∼ Bk.
But by property (b) of our preorder, we have Bi < Bi ∪Bj, since Bj is non-empty. Since
Bi ∪ Bj ⊆ B − Bk by disjointness, we have Bk ∼ Bi < Bi ∪ Bj . B − Bk and it follows
that Bk < B − Bk, contrary to the assumption that none of the three inequalities were
strict.14 �
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14I am grateful to Trent Dougherty, Alan Hájek, Thomas Hofweber, A. Paul Pedersen and Jonathan
Weisberg for encouragement and discussions of these topics.



REGULARITY 14

[2] Bell, J. L., and Fremlin, D. H. 1972. “A geometric form of the Axiom of Choice.” Fundamenta
Mathematicae 77: 167–170.

[3] Bernstein, Allen R., and Wattenberg, F. 1969. “Non-standard Measure Theory.” In Applications of
model theory of algebra, analysis, and probability, ed. W. A. J. Luxemberg, 171-85. New York: Holt,
Rinehart and Winston.

[4] Borel, Emile. 1946. Les paradoxes de l’infini. Paris: Gallimard.
[5] de Finetti, Bruno. 1931. “Sul significato soggestivo della probabilità.” Fundamenta Mathematicae
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