FAILURES OF STRICT PROPRIETY IN PROPER
SCORING RULES

ALEXANDER R. PRUSS

Let \(\Omega \) be finite.

For \(v \in [0, 1]^{\Omega} \) and \(w \in [-\infty, \infty)^{\Omega} \), write
\[
\langle v, w \rangle = \sum_{\omega \in \Omega} v(\omega)w(\omega).
\]

Let \(P = \{ p \in [0, 1]^\Omega : \sum_{\omega} p(\omega) = 1 \} \).

Proposition 1. Let \(s : P \to [-\infty, \infty)^\Omega \) be such that \(\langle p, s(p) \rangle \) is always finite and \(s \) is continuous. Suppose we have propriety: \(\langle p, s(q) \rangle \leq \langle p, s(p) \rangle \) for all \(p, q \in P \). Then if equality holds for some \(p \) and \(q \) in \(P \), we must have \(s(p) = s(q) \).

Lemma 1. Under the conditions of the Proposition, if we have equality for some \(p \) and \(q \), then \(\langle r, s(q) \rangle \leq \langle r, s(p) \rangle \) for all \(r \in P \).

Proof of Lemma 1. Let \(p_\varepsilon = (1 - \varepsilon)p + \varepsilon r \) for \(\varepsilon \in [0, 1] \). Then:
\[
(1 - \varepsilon)\langle p, s(p) \rangle + \varepsilon\langle r, s(q) \rangle = (1 - \varepsilon)\langle p, s(q) \rangle + \varepsilon\langle r, s(q) \rangle = \langle p_\varepsilon, s(q) \rangle \\
\leq \langle p_\varepsilon, s(p_\varepsilon) \rangle \\
= (1 - \varepsilon)\langle p, s(p_\varepsilon) \rangle + \varepsilon\langle r, s(p_\varepsilon) \rangle \\
\leq (1 - \varepsilon)\langle p, s(p) \rangle + \varepsilon\langle r, s(p) \rangle.
\]

using the assumed equality in the propriety inequality, and applying the propriety inequality twice. Since \(\langle p, s(p) \rangle \) is finite, for \(\varepsilon > 0 \) we must have
\[
\langle r, s(q) \rangle \leq \langle r, s(p) \rangle.
\]

But \(\langle r, s(p_\varepsilon) \rangle \to \langle r, s(p) \rangle \) as \(\varepsilon \to 0^+ \) by continuity.

Proof of Proposition 1. Applying Lemma 1, we have \(\langle r, s(q) \rangle \leq \langle r, s(p) \rangle \) for all \(r \in P \). In particular \(\langle q, s(q) \rangle \leq \langle q, s(p) \rangle \). By propriety, we must have equality. Applying Lemma 1 again, we have \(\langle r, s(p) \rangle \leq \langle r, s(q) \rangle \) for all \(r \in P \). Hence, \(\langle r, s(p) \rangle = \langle r, s(q) \rangle \) for all \(r \in P \), and thus \(s(p) = s(q) \).

References